-
Notifications
You must be signed in to change notification settings - Fork 22
/
rbc.go
413 lines (377 loc) · 11.8 KB
/
rbc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
package hbbft
import (
"bytes"
"crypto/sha256"
"fmt"
"sort"
"github.com/NebulousLabs/merkletree"
"github.com/klauspost/reedsolomon"
)
// BroadcastMessage holds the payload sent between nodes in the rbc protocol.
// Its basically just a wrapper to let top-level protocols distinguish incoming
// messages.
type BroadcastMessage struct {
Payload interface{}
}
// ProofRequest holds the RootHash along with the Shard of the erasure encoded
// payload.
type ProofRequest struct {
RootHash []byte
// Proof[0] will containt the actual data.
Proof [][]byte
Index, Leaves int
}
// EchoRequest represents the echoed version of the proof.
type EchoRequest struct {
ProofRequest
}
// ReadyRequest holds the RootHash of the received proof and should be sent
// after receiving and validating enough proof chunks.
type ReadyRequest struct {
RootHash []byte
}
type proofs []ProofRequest
func (p proofs) Len() int { return len(p) }
func (p proofs) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p proofs) Less(i, j int) bool { return p[i].Index < p[j].Index }
// RBC represents the instance of the "Reliable Broadcast Algorithm".
type RBC struct {
// Config holds the configuration.
Config
// proposerID is the ID of the proposing node of this RB instance.
proposerID uint64
// The reedsolomon encoder to encode the proposed value into shards.
enc reedsolomon.Encoder
// recvReadys is a mapping between the sender and the root hash that was
// inluded in the ReadyRequest.
recvReadys map[uint64][]byte
// revcEchos is a mapping between the sender and the EchoRequest.
recvEchos map[uint64]*EchoRequest
// Number of the parity and data shards that will be used for erasure encoding
// the given value.
numParityShards, numDataShards int
// Que of BroadcastMessages that need to be broadcasted after each received
// and processed a message.
messages []*BroadcastMessage
// Booleans fields to determine operations on the internal state.
echoSent, readySent, outputDecoded bool
// The actual output this instance has produced.
output []byte
// control flow tuples for internal channel communication.
closeCh chan struct{}
inputCh chan rbcInputTuple
messageCh chan rbcMessageTuple
}
type (
rbcMessageTuple struct {
senderID uint64
msg *BroadcastMessage
err chan error
}
rbcInputResponse struct {
messages []*BroadcastMessage
err error
}
rbcInputTuple struct {
value []byte
response chan rbcInputResponse
}
)
// NewRBC returns a new instance of the ReliableBroadcast configured
// with the given config
func NewRBC(cfg Config, proposerID uint64) *RBC {
if cfg.F == 0 {
cfg.F = (cfg.N - 1) / 3
}
var (
parityShards = 2 * cfg.F
dataShards = cfg.N - parityShards
)
enc, err := reedsolomon.New(dataShards, parityShards)
if err != nil {
panic(err)
}
rbc := &RBC{
Config: cfg,
recvEchos: make(map[uint64]*EchoRequest),
recvReadys: make(map[uint64][]byte),
enc: enc,
numParityShards: parityShards,
numDataShards: dataShards,
messages: []*BroadcastMessage{},
proposerID: proposerID,
closeCh: make(chan struct{}),
inputCh: make(chan rbcInputTuple),
messageCh: make(chan rbcMessageTuple),
}
go rbc.run()
return rbc
}
// InputValue will set the given data as value V. The data will first splitted
// into shards and additional parity shards (used for reconstruction), the
// equally splitted shards will be fed into a reedsolomon encoder. After encoding,
// only the requests for the other participants are beeing returned.
func (r *RBC) InputValue(data []byte) ([]*BroadcastMessage, error) {
t := rbcInputTuple{
value: data,
response: make(chan rbcInputResponse),
}
r.inputCh <- t
resp := <-t.response
return resp.messages, resp.err
}
// HandleMessage will process the given rpc message and will return a possible
// outcome. The caller is resposible to make sure only RPC messages are passed
// that are elligible for the RBC protocol.
func (r *RBC) HandleMessage(senderID uint64, msg *BroadcastMessage) error {
t := rbcMessageTuple{
senderID: senderID,
msg: msg,
err: make(chan error),
}
r.messageCh <- t
return <-t.err
}
func (r *RBC) stop() {
close(r.closeCh)
}
func (r *RBC) run() {
for {
select {
case <-r.closeCh:
return
case t := <-r.inputCh:
msgs, err := r.inputValue(t.value)
t.response <- rbcInputResponse{
messages: msgs,
err: err,
}
case t := <-r.messageCh:
t.err <- r.handleMessage(t.senderID, t.msg)
}
}
}
func (r *RBC) inputValue(data []byte) ([]*BroadcastMessage, error) {
shards, err := makeShards(r.enc, data)
if err != nil {
return nil, err
}
reqs, err := makeBroadcastMessages(shards)
if err != nil {
return nil, err
}
// The first request is for ourselfs. The rests is distributed under the
// participants.
proof := reqs[0].Payload.(*ProofRequest)
if err := r.handleProofRequest(r.ID, proof); err != nil {
return nil, err
}
return reqs[1:], nil
}
func (r *RBC) handleMessage(senderID uint64, msg *BroadcastMessage) error {
switch t := msg.Payload.(type) {
case *ProofRequest:
return r.handleProofRequest(senderID, t)
case *EchoRequest:
return r.handleEchoRequest(senderID, t)
case *ReadyRequest:
return r.handleReadyRequest(senderID, t)
default:
return fmt.Errorf("invalid RBC protocol message: %+v", msg)
}
}
// Messages returns the que of messages. The message que get's filled after
// processing a protocol message. After calling this method the que will
// be empty. Hence calling Messages can only occur once in a single roundtrip.
func (r *RBC) Messages() []*BroadcastMessage {
msgs := r.messages
r.messages = []*BroadcastMessage{}
return msgs
}
// Output will return the output of the rbc instance. If the output was not nil
// then it will return the output else nil. Note that after consuming the output
// its will be set to nil forever.
func (r *RBC) Output() []byte {
if r.output != nil {
out := r.output
r.output = nil
return out
}
return nil
}
// When a node receives a Proof from a proposer it broadcasts the proof as an
// EchoRequest to the network after validating its content.
func (r *RBC) handleProofRequest(senderID uint64, req *ProofRequest) error {
if senderID != r.proposerID {
return fmt.Errorf(
"receiving proof from (%d) that is not from the proposing node (%d)",
senderID, r.proposerID,
)
}
if r.echoSent {
return fmt.Errorf("received proof from (%d) more the once", senderID)
}
if !validateProof(req) {
return fmt.Errorf("received invalid proof from (%d)", senderID)
}
r.echoSent = true
echo := &EchoRequest{*req}
r.messages = append(r.messages, &BroadcastMessage{echo})
return r.handleEchoRequest(r.ID, echo)
}
// Every node that has received (N - f) echo's with the same root hash from
// distinct nodes knows that at least (f + 1) "good" nodes have sent an echo
// with that root hash to every participant. Upon receiving (N - f) echo's we
// broadcast a ReadyRequest with the roothash. Even without enough echos, if a
// node receives (f + 1) ReadyRequests we know that at least one good node has
// sent Ready, hence also knows that everyone will be able to decode eventually
// and broadcast ready itself.
func (r *RBC) handleEchoRequest(senderID uint64, req *EchoRequest) error {
if _, ok := r.recvEchos[senderID]; ok {
return fmt.Errorf(
"received multiple echos from (%d) my id (%d)", senderID, r.ID)
}
if !validateProof(&req.ProofRequest) {
return fmt.Errorf(
"received invalid proof from (%d) my id (%d)", senderID, r.ID)
}
r.recvEchos[senderID] = req
if r.readySent || r.countEchos(req.RootHash) < r.N-r.F {
return r.tryDecodeValue(req.RootHash)
}
r.readySent = true
ready := &ReadyRequest{req.RootHash}
r.messages = append(r.messages, &BroadcastMessage{ready})
return r.handleReadyRequest(r.ID, ready)
}
// If a node had received (2 * f + 1) ready's (with matching root hash)
// from distinct nodes, it knows that at least (f + 1) good nodes have sent
// it. Hence every good node will eventually receive (f + 1) and broadcast
// ready itself. Eventually a node with (2 * f + 1) readys and (f + 1) echos
// will decode and ouput the value, knowing that every other good node will
// do the same.
func (r *RBC) handleReadyRequest(senderID uint64, req *ReadyRequest) error {
if _, ok := r.recvReadys[senderID]; ok {
return fmt.Errorf("received multiple readys from (%d)", senderID)
}
r.recvReadys[senderID] = req.RootHash
if r.countReadys(req.RootHash) == r.F+1 && !r.readySent {
r.readySent = true
ready := &ReadyRequest{req.RootHash}
r.messages = append(r.messages, &BroadcastMessage{ready})
}
return r.tryDecodeValue(req.RootHash)
}
// tryDecodeValue will check whether the Value (V) can be decoded from the received
// shards. If the decode was successfull output will be set the this value.
func (r *RBC) tryDecodeValue(hash []byte) error {
if r.outputDecoded || r.countReadys(hash) <= 2*r.F || r.countEchos(hash) <= r.F {
return nil
}
// At this point we can decode the shards. First we create a new slice of
// only sortable proof values.
r.outputDecoded = true
var prfs proofs
for _, echo := range r.recvEchos {
prfs = append(prfs, echo.ProofRequest)
}
sort.Sort(prfs)
// Reconstruct the value with reedsolomon encoding.
shards := make([][]byte, r.numParityShards+r.numDataShards)
for _, p := range prfs {
shards[p.Index] = p.Proof[0]
}
if err := r.enc.Reconstruct(shards); err != nil {
return nil
}
var value []byte
for _, data := range shards[:r.numDataShards] {
value = append(value, data...)
}
r.output = value
return nil
}
// countEchos count the number of echos with the given hash.
func (r *RBC) countEchos(hash []byte) int {
n := 0
for _, e := range r.recvEchos {
if bytes.Compare(hash, e.RootHash) == 0 {
n++
}
}
return n
}
// countReadys count the number of readys with the given hash.
func (r *RBC) countReadys(hash []byte) int {
n := 0
for _, h := range r.recvReadys {
if bytes.Compare(hash, h) == 0 {
n++
}
}
return n
}
// makeProofRequests will build a merkletree out of the given shards and make
// equal ProofRequest to send one proof to each participant in the consensus.
func makeProofRequests(shards [][]byte) ([]*ProofRequest, error) {
reqs := make([]*ProofRequest, len(shards))
for i := 0; i < len(reqs); i++ {
tree := merkletree.New(sha256.New())
tree.SetIndex(uint64(i))
for i := 0; i < len(shards); i++ {
tree.Push(shards[i])
}
root, proof, proofIndex, n := tree.Prove()
reqs[i] = &ProofRequest{
RootHash: root,
Proof: proof,
Index: int(proofIndex),
Leaves: int(n),
}
}
return reqs, nil
}
// makeProofRequests will build a merkletree out of the given shards and make
// equal ProofRequest to send one proof to each participant in the consensus.
func makeBroadcastMessages(shards [][]byte) ([]*BroadcastMessage, error) {
msgs := make([]*BroadcastMessage, len(shards))
for i := 0; i < len(msgs); i++ {
tree := merkletree.New(sha256.New())
tree.SetIndex(uint64(i))
for i := 0; i < len(shards); i++ {
tree.Push(shards[i])
}
root, proof, proofIndex, n := tree.Prove()
msgs[i] = &BroadcastMessage{
Payload: &ProofRequest{
RootHash: root,
Proof: proof,
Index: int(proofIndex),
Leaves: int(n),
},
}
}
return msgs, nil
}
// validateProof will validate the given ProofRequest and hence return true or
// false accordingly.
func validateProof(req *ProofRequest) bool {
return merkletree.VerifyProof(
sha256.New(),
req.RootHash,
req.Proof,
uint64(req.Index),
uint64(req.Leaves))
}
// makeShards will split the given value into equal sized shards along with
// somen additional parity shards.
func makeShards(enc reedsolomon.Encoder, data []byte) ([][]byte, error) {
shards, err := enc.Split(data)
if err != nil {
return nil, err
}
if err := enc.Encode(shards); err != nil {
return nil, err
}
return shards, nil
}