The container comes with all the software needed to generate summary statistics.
-
You need to download the container file using one of the following commands. This will use approximately one gigabyte of storage.
Container platform Version Command Singularity 3.x wget http://download.gwas.science/singularity/ramp-latest.sif
Docker docker pull gwas.science/ramp:latest
-
Next, start an interactive shell inside the container using one of the following commands.
Container platform Command Singularity singularity shell --hostname localhost --bind ${working_directory}:/data --bind /tmp gwas-protocol-latest.sif
Docker docker run --interactive --tty --volume ${working_directory}:/data --bind /tmp gwas.science/gwas-protocol /bin/bash
To create a local development environment install Miniforge and create a .condarc
file in your home directory with the following contents:
channels:
- conda-forge
- bioconda
Then update your .bashrc
or .zshrc
with mamba init
. This will allow you to use the conda
command.
Next, install mamba
using conda install mamba
and then create the environment using the following command:
micromamba create --name "gwas-protocol" \
"conda-build" \
"bcftools" "plink" "plink2" "tabix" "gcta" \
"parallel" \
"jupyterlab" "ipywidgets" \
"python=3.12" "more-itertools" "psutil" "tqdm" "pyyaml" \
"python-blosc2" "pyarrow" \
"numpy" "scipy" "pandas" "threadpoolctl" "universal_pathlib" \
"matplotlib" "seaborn" \
"jax" "jaxlib=*=cpu*" "jaxtyping" "chex" "etils" "python-flatbuffers" \
"mkl-include" "mkl" "c-blosc2" \
"mypy" "pandas-stubs" "types-psutil" "types-pyyaml" "types-seaborn" "types-setuptools" "types-tqdm" \
"pytest-benchmark" "pytest-cov" \
"cython" "gxx_linux-64>=13" "gcc_linux-64>=13" "sysroot_linux-64>=2.17" "zlib" "gdb"
Finally, install the gwas
package using the following command:
pip install --no-deps --editable "src/gwas"
data_path=/sc-projects/sc-proj-cc15-mb-enigma/genetics/development/opensnp
for sample_size in 100 500 3421; do
mkdir -p "${sample_size}"
pushd "${sample_size}" || exit 1
benchmark --vcf $(for chromosome in $(seq 1 22); do echo ${data_path}/${sample_size}/chr${chromosome}.dose.vcf.zst; done) --output-directory . --method ramp --causal-variant-count 100 --simulation-count 1000 --seed 1000 --missing-value-pattern-count 10
popd || exit 1
done